Поиск по блогу

понедельник, 3 марта 2014 г.

IPython in Depth, SciPy2013 Tutorial, Part 1 of 3 "IPython: beyond plain Python"

Видео надо смотреть с 25-ой минуты (IPython in Depth, SciPy2013 Tutorial, Part 1 of 3 )... Как получать помощь (? ?? %quickref ...), история , i, _7, %history -n 1-5, files=!ls, !echo
When executing code in IPython, all valid Python syntax works as-is, but IPython provides a number of features designed to make the interactive experience more fluid and efficient.

First things first: running code, getting help

In the notebook, to run a cell of code, hit Shift-Enter. This executes the cell and puts the cursor in the next cell below, or makes a new one if you are at the end. Alternately, you can use:
  • Alt-Enter to force the creation of a new cell unconditionally (useful when inserting new content in the middle of an existing notebook).
  • Control-Enter executes the cell and keeps the cursor in the same cell, useful for quick experimentation of snippets that you don't need to keep permanently.
In [1]:
print "Hi"
Hi

Getting help:
In [2]:
?
Typing object_name? will print all sorts of details about any object, including docstrings, function definition lines (for call arguments) and constructor details for classes.
In [3]:
import collections
collections.namedtuple?
In [4]:
collections.Counter??
In [5]:
*int*?
An IPython quick reference card:
In [6]:
%quickref

Tab completion

Tab completion, especially for attributes, is a convenient way to explore the structure of any object you’re dealing with. Simply type object_name.<TAB> to view the object’s attributes. Besides Python objects and keywords, tab completion also works on file and directory names.
In [44]:
collections.

The interactive workflow: input, output, history

In [7]:
2+10
Out[7]:
12
In [8]:
_+10
Out[8]:
22
You can suppress the storage and rendering of output if you append ; to the last cell (this comes in handy when plotting with matplotlib, for example):
In [9]:
10+20;
In [10]:
_
Out[10]:
22
The output is stored in _N and Out[N] variables:
In [11]:
_7 == Out[7]
Out[11]:
True
And the last three have shorthands for convenience:
In [12]:
print 'last output:', _
print 'next one   :', __
print 'and next   :', ___
last output: True
next one   : 22
and next   : 22

In [13]:
In[11]
Out[13]:
u'_7 == Out[7]'
In [14]:
_i
Out[14]:
u'In[11]'
In [15]:
_ii
Out[15]:
u'In[11]'
In [16]:
print 'last input:', _i
print 'next one  :', _ii
print 'and next  :', _iii
last input: _ii
next one  : _i
and next  : In[11]

In [17]:
%history -n 1-5
   1: print "Hi"
   2: ?
   3:
import collections
collections.namedtuple?
   4: collections.Counter??
   5: *int*?

Exercise
Write the last 10 lines of history to a file named log.py.

Accessing the underlying operating system

In [18]:
!pwd
/Users/bussonniermatthias/ipython-in-depth/notebooks


In [19]:
files = !ls
print "My current directory's files:"
print files
My current directory's files:
['00 - Notebook Basics.ipynb', '01 - IPython - beyond plain Python.ipynb', '02 - Markdown Cells.ipynb', '03 - Rich Display System.html', '03 - Rich Display System.ipynb', '04 - Custom Display Logic.html', '04 - Custom Display Logic.ipynb', '05 - NbConvert from command line.ipynb', '06 - NbConvert Python library.ipynb', 'BackgroundJobs.ipynb', 'Blog1.html', 'Blog1.ipynb', 'Configuring IPython.ipynb', 'Custom Display Logic.aux', 'Custom Display Logic.html', 'Custom Display Logic.idx', 'Custom Display Logic.log', 'Custom Display Logic.out', 'Custom Display Logic.pdf', 'Custom Display Logic.tex', 'Custom Display Logic_files', 'EuroSciPy.ipynb', 'Overview of IPython.parallel.ipynb', 'Parallel Example - Remote Iteration.ipynb', 'Parallel Magics.ipynb', 'Parallel face detection (no download).ipynb', 'Parallel face detection.ipynb', 'Running Code.ipynb', 'Running a Secure Public Notebook.ipynb', 'Terminal usage.ipynb', 'Typesetting Math Using MathJax.ipynb', 'Using DirectView and LoadBalancedView Together.ipynb', 'coloreddiff.tpl', 'figs', 'flare.json', 'haarcascade_frontalface_default.xml', 'kernel-embedding', 'myscript.py', 'old', 'simplepython.tpl', 'soln', 'test.txt', 'text_analysis.py']

In [20]:
!echo $files
[00 - Notebook Basics.ipynb, 01 - IPython - beyond plain Python.ipynb, 02 - Markdown Cells.ipynb, 03 - Rich Display System.html, 03 - Rich Display System.ipynb, 04 - Custom Display Logic.html, 04 - Custom Display Logic.ipynb, 05 - NbConvert from command line.ipynb, 06 - NbConvert Python library.ipynb, BackgroundJobs.ipynb, Blog1.html, Blog1.ipynb, Configuring IPython.ipynb, Custom Display Logic.aux, Custom Display Logic.html, Custom Display Logic.idx, Custom Display Logic.log, Custom Display Logic.out, Custom Display Logic.pdf, Custom Display Logic.tex, Custom Display Logic_files, EuroSciPy.ipynb, Overview of IPython.parallel.ipynb, Parallel Example - Remote Iteration.ipynb, Parallel Magics.ipynb, Parallel face detection (no download).ipynb, Parallel face detection.ipynb, Running Code.ipynb, Running a Secure Public Notebook.ipynb, Terminal usage.ipynb, Typesetting Math Using MathJax.ipynb, Using DirectView and LoadBalancedView Together.ipynb, coloreddiff.tpl, figs, flare.json, haarcascade_frontalface_default.xml, kernel-embedding, myscript.py, old, simplepython.tpl, soln, test.txt, text_analysis.py]


In [21]:
!echo {files[0].upper()}
00 - NOTEBOOK BASICS.IPYNB


Beyond Python: magic functions

The IPyhton 'magic' functions are a set of commands, invoked by prepending one or two % signs to their name, that live in a namespace separate from your normal Python variables and provide a more command-like interface. They take flags with -- and arguments without quotes, parentheses or commas. The motivation behind this system is two-fold:
  • To provide an orthogonal namespace for controlling IPython itself and exposing other system-oriented functionality.
  • To expose a calling mode that requires minimal verbosity and typing while working interactively. Thus the inspiration taken from the classic Unix shell style for commands.
In [22]:
%magic
Line vs cell magics:
In [23]:
%timeit range(10)
1000000 loops, best of 3: 352 ns per loop

In [24]:
%%timeit
range(10)
range(100)
1000000 loops, best of 3: 1.43 µs per loop

Line magics can be used even inside code blocks:
In [25]:
for i in range(5):
    size = i*100
    print 'size:',size, 
    %timeit range(size)
size: 0 1000000 loops, best of 3: 205 ns per loop
size: 100 1000000 loops, best of 3: 1.15 µs per loop
size: 200 1000000 loops, best of 3: 1.56 µs per loop
size: 300 100000 loops, best of 3: 2.36 µs per loop
size: 400 100000 loops, best of 3: 3.3 µs per loop

Magics can do anything they want with their input, so it doesn't have to be valid Python:
In [26]:
%%bash
echo "My shell is:" $SHELL
echo "My memory status is:"
free
My shell is: /bin/zsh
My memory status is:

bash: line 3: free: command not found

Another interesting cell magic: create any file you want locally from the notebook:
In [27]:
%%writefile test.txt
This is a test file!
It can contain anything I want...

And more...
Overwriting test.txt

In [28]:
!cat test.txt
This is a test file!

It can contain anything I want...



And more...
Let's see what other magics are currently defined in the system:
In [29]:
%lsmagic
Out[29]:
Available line magics:
%alias  %alias_magic  %autocall  %automagic  %autosave  %bookmark  %cd  %clear  %colors  %config  %connect_info  %debug  %dhist  %dirs  %doctest_mode  %ed  %edit  %env  %gui  %hist  %history  %install_default_config  %install_ext  %install_profiles  %killbgscripts  %less  %load  %load_ext  %loadpy  %logoff  %logon  %logstart  %logstate  %logstop  %lsmagic  %macro  %magic  %man  %matplotlib  %more  %notebook  %page  %pastebin  %pdb  %pdef  %pdoc  %pfile  %pinfo  %pinfo2  %popd  %pprint  %precision  %profile  %prun  %psearch  %psource  %pushd  %pwd  %pycat  %pylab  %qtconsole  %quickref  %recall  %rehashx  %reload_ext  %rep  %rerun  %reset  %reset_selective  %run  %save  %sc  %store  %sx  %system  %tb  %time  %timeit  %unalias  %unload_ext  %who  %who_ls  %whos  %xdel  %xmode

Available cell magics:
%%!  %%HTML  %%SVG  %%bash  %%capture  %%debug  %%file  %%html  %%javascript  %%latex  %%perl  %%prun  %%pypy  %%python  %%python3  %%ruby  %%script  %%sh  %%svg  %%sx  %%system  %%time  %%timeit  %%writefile

Automagic is ON, % prefix IS NOT needed for line magics.

Running normal Python code: execution and errors

Notonly can you input normal Python code, you can even paste straight from a Python or IPython shell session:
In [30]:
>>> # Fibonacci series:
... # the sum of two elements defines the next
... a, b = 0, 1
>>> while b < 10:
...     print b
...     a, b = b, a+b
1
1
2
3
5
8

In [31]:
In [1]: for i in range(10):
   ...:     print i,
   ...:     
0 1 2 3 4 5 6 7 8 9

And when your code produces errors, you can control how they are displayed with the %xmode magic:
In [32]:
%%writefile mod.py

def f(x):
    return 1.0/(x-1)

def g(y):
    return f(y+1)
Writing mod.py

Now let's call the function g with an argument that would produce an error:
In [33]:
import mod
mod.g(0)
---------------------------------------------------------------------------
ZeroDivisionError                         Traceback (most recent call last)
<ipython-input-33-a54c5799f57e> in <module>()
      1 import mod
----> 2 mod.g(0)

/Users/bussonniermatthias/ipython-in-depth/notebooks/mod.py in g(y)
      4 
      5 def g(y):
----> 6     return f(y+1)

/Users/bussonniermatthias/ipython-in-depth/notebooks/mod.py in f(x)
      1 
      2 def f(x):
----> 3     return 1.0/(x-1)
      4 
      5 def g(y):

ZeroDivisionError: float division by zero
In [34]:
%xmode plain
mod.g(0)
Traceback (most recent call last):

  File "<ipython-input-34-5a5bcec1553f>", line 2, in <module>
    mod.g(0)

  File "mod.py", line 6, in g
    return f(y+1)

  File "mod.py", line 3, in f
    return 1.0/(x-1)

ZeroDivisionError: float division by zero
Exception reporting mode: Plain

In [35]:
%xmode verbose
mod.g(0)
---------------------------------------------------------------------------
ZeroDivisionError                         Traceback (most recent call last)
<ipython-input-35-81967cfaa0c3> in <module>()
      1 get_ipython().magic(u'xmode verbose')
----> 2 mod.g(0)
        global mod.g = <function g at 0x10d50b5f0>

/Users/bussonniermatthias/ipython-in-depth/notebooks/mod.py in g(y=0)
      4 
      5 def g(y):
----> 6     return f(y+1)
        global f = <function f at 0x10d508e60>
        y = 0

/Users/bussonniermatthias/ipython-in-depth/notebooks/mod.py in f(x=1)
      1 
      2 def f(x):
----> 3     return 1.0/(x-1)
        x = 1
      4 
      5 def g(y):

ZeroDivisionError: float division by zero
Exception reporting mode: Verbose

The default %xmode is "context", which shows additional context but not all local variables. Let's restore that one for the rest of our session.
In [36]:
%xmode context
Exception reporting mode: Context

Raw Input in the notebook

Since 1.0 the IPython notebook web application support raw_input which for example allow us to invoke the %debug magic in the notebook:
In [37]:
mod.g(0)
---------------------------------------------------------------------------
ZeroDivisionError                         Traceback (most recent call last)
<ipython-input-37-5e708f13c839> in <module>()
----> 1 mod.g(0)

/Users/bussonniermatthias/ipython-in-depth/notebooks/mod.py in g(y)
      4 
      5 def g(y):
----> 6     return f(y+1)

/Users/bussonniermatthias/ipython-in-depth/notebooks/mod.py in f(x)
      1 
      2 def f(x):
----> 3     return 1.0/(x-1)
      4 
      5 def g(y):

ZeroDivisionError: float division by zero
In [38]:
%debug
> /Users/bussonniermatthias/ipython-in-depth/notebooks/mod.py(3)f()
      2 def f(x):
----> 3     return 1.0/(x-1)
      4 

ipdb> x
1
ipdb> up
> /Users/bussonniermatthias/ipython-in-depth/notebooks/mod.py(6)g()
      4 
      5 def g(y):
----> 6     return f(y+1)

ipdb> y
0
ipdb> up
> <ipython-input-37-5e708f13c839>(1)<module>()
----> 1 mod.g(0)

ipdb> exit

Don't foget to exit your debugging session. Raw input can of course be use to ask for user input:
In [39]:
enjoy = raw_input('Are you enjoying this tutorial ?')
print 'enjoy is :', enjoy
Are you enjoying this tutorial ?Yes !
enjoy is : Yes !

Plotting in the notebook

This imports numpy as np and matplotlib's plotting routines as plt, plus setting lots of other stuff for you to work interactivel very easily:
In [40]:
%matplotlib inline
In [41]:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.pyplot import gcf
In [42]:
x = np.linspace(0, 2*np.pi, 300)
y = np.sin(x**2)
plt.plot(x, y)
plt.title("A little chirp")
f = gcf()  # let's keep the figure object around for later...

The IPython kernel/client model

In [43]:
%connect_info
{
  "stdin_port": 50023, 
  "ip": "127.0.0.1", 
  "control_port": 50024, 
  "hb_port": 50025, 
  "signature_scheme": "hmac-sha256", 
  "key": "b54b8859-d64d-48bb-814a-909f9beb3316", 
  "shell_port": 50021, 
  "transport": "tcp", 
  "iopub_port": 50022
}

Paste the above JSON into a file, and connect with:
    $> ipython <app> --existing <file>
or, if you are local, you can connect with just:
    $> ipython <app> --existing kernel-30f00f4a-230c-4e64-bea5-0e5f6a52cb40.json 
or even just:
    $> ipython <app> --existing 
if this is the most recent IPython session you have started.

In [83]:
%qtconsole


Посты чуть ниже также могут вас заинтересовать

Комментариев нет:

Отправить комментарий