Kопипаст из pandas-cookbook. Таблица погоды за 2012 год из предыдущей (пятой), фильтруем по слову в столбце contains('Snow'), строим димграмму снегопадов за год, затем при помощи resample()
находим сренемесячные медианы температуры и объединяем в красивые диаграммы снегопады и температутру.
You'll see that the 'Weather' column has a text description of the weather that was going on each hour. We'll assume it's snowing if the text description contains "Snow"... pandas provides vectorized string functions, to make it easy to operate on columns containing text. There are some great examples in the documentation.
%matplotlib inline
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
pd.set_option('display.mpl_style', 'default')
plt.rcParams['figure.figsize'] = (15, 3)
We saw earlier that pandas is really good at dealing with dates. It is also amazing with strings! We're going to go back to our weather data from Chapter 5, here.
weather_2012 = pd.read_csv('../data/weather_2012.csv', parse_dates=True, index_col='Date/Time')
weather_2012[:5]
6.1 String operations¶
weather_description = weather_2012['Weather']
is_snowing = weather_description.str.contains('Snow')
This gives us a binary vector, which is a bit hard to look at, so we'll plot it.
# Not super useful
is_snowing[:5]
# More useful!
is_snowing.plot()
6.2 Use resampling to find the snowiest month¶
If we wanted the median temperature each month, we could use the resample()
method like this:
weather_2012['Temp (C)'].resample('M', how=np.median).plot(kind='bar')
Unsurprisingly, July and August are the warmest.
So we can think of snowiness as being a bunch of 1s and 0s instead of True
s and False
s:
is_snowing.astype(float)[:10]
and then use resample
to find the percentage of time it was snowing each month
is_snowing.astype(float).resample('M', how=np.mean)
is_snowing.astype(float).resample('M', how=np.mean).plot(kind='bar')
So now we know! In 2012, December was the snowiest month. Also, this graph suggests something that I feel -- it starts snowing pretty abruptly in November, and then tapers off slowly and takes a long time to stop, with the last snow usually being in April or May.
6.3 Plotting temperature and snowiness stats together¶
We can also combine these two statistics (temperature, and snowiness) into one dataframe and plot them together:
temperature = weather_2012['Temp (C)'].resample('M', how=np.median)
is_snowing = weather_2012['Weather'].str.contains('Snow')
snowiness = is_snowing.astype(float).resample('M', how=np.mean)
# Name the columns
temperature.name = "Temperature"
snowiness.name = "Snowiness"
We'll use concat
again to combine the two statistics into a single dataframe.
stats = pd.concat([temperature, snowiness], axis=1)
stats
stats.plot(kind='bar')
Uh, that didn't work so well because the scale was wrong. We can do better by plotting them on two separate graphs:
stats.plot(kind='bar', subplots=True, figsize=(15, 10))
Посты чуть ниже также могут вас заинтересовать
Комментариев нет:
Отправить комментарий